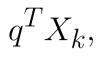
Divide and Conquer Strategies for Effective Information Retrieval

Jie Chen and Yousef Saad Department of Computer Science and Engineering, University of Minnesota

Background

Latent Semantic Indexing (LSI): Let a column vector x_i represent a document. Given a term-document matrix $X = [x_1, \ldots, x_n]$ and a query vector q, the relevance scores of the documents to the query are computed (up to normalizations) as the row vector



where X_k is the best rank-k approximation of X.

Limitations: When the document collection (X) becomes large, the computation of X_k is very expensive, both in time and in memory. Let X have size $m \times n$ with nnz nonzeros, the most efficient implementation of truncated SVD takes

- time: $O(k'(nnz + \min(m, n)) + T_t)$,
- space: $O(nnz + k' \min(m, n) + T_s)$,

where k' is the number of Lanczos steps (typically a few times of k), and T_t (T_s) is the time (space) cost of eigendecompositions of tridiagonal matrices and convergence tests.

Our Approach

Two combined schemes to reduce the above costs:

- Partition the term-document matrix, and
- Perform a relevance analysis (similar to LSI) for each partition, or for only a few ones.

Benefits:

- 1. The partitioning step is simple and very inexpensive.
- 2. The relevance analysis yields similar results to LSI, but it can be an order of magnitude faster.
- 3. Each analysis deals with only a small portion of the matrix, hence the whole process is highly parallelizable.
- 4. Instead of a complicated parallel SVD for large scale LSI, our approach is conceptually much simpler and easier to implement.

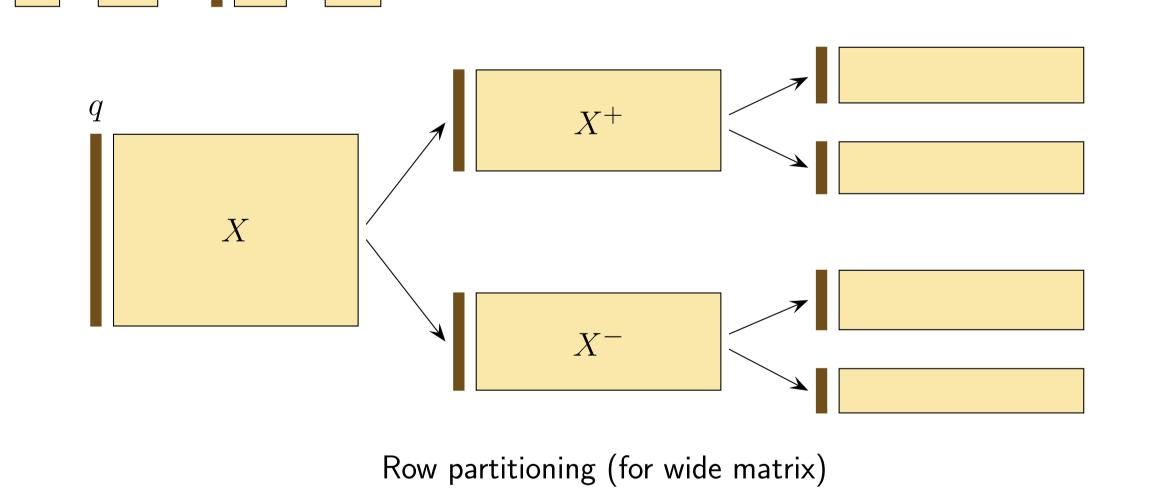
Partitioning

Column-Partitioning(X)

- 1. Compute the centroid c of the documents.
- 2. Compute the largest right singular vector v of the column-centered matrix $\bar{X} = X c\mathbf{1}^T$.
- 3. Form $X_+ \leftarrow \{x_i \mid v_i \geq \mathsf{margin}_-\}$ and $X_- \leftarrow \{x_i \mid v_i < \mathsf{margin}_+\}$.
- 4. If $|X_+| > \text{set.size.threshold}$, COLUMN-PARTITIONING (X_+) .
- 5. If $|X_-| > \text{set.size.threshold}$, COLUMN-PARTITIONING (X_-) .

Row-Partitioning(X)

- 1. Compute the centroid c^\prime of the terms.
- 2. Compute the largest left singular vector u of the row-centered matrix $\bar{X}' = X \mathbf{1}c'$.
- 3. Form $X^+ \leftarrow \{X(i,:) \mid u_i \geq \mathsf{margin}^-\}$ and $X^- \leftarrow \{X(i,:) \mid u_i < \mathsf{margin}^+\}$.
- 4. If $|X^+| > \text{set.size.threshold}$, ROW-PARTITIONING (X^+) .
- 5. If $|X^-| > \text{set.size.threshold}$, ROW-PARTITIONING(X^-).



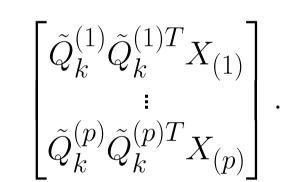
Query Strategies

For tall matrix X:

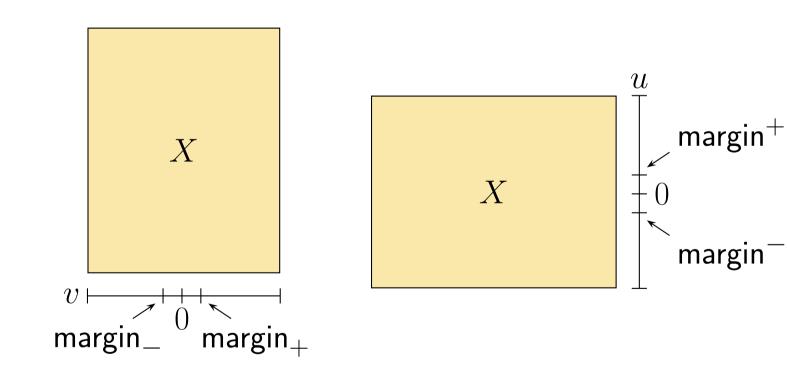
- 1. Partition the columns of X. A binary tree structure is formed. (See figure on the panel to the left.)
- 2. For a given query q, compute relevance scores between q and those documents in the leaves of the tree. (See explanation on the panel to the right.)
- 3. Since a document x_i may belong to different partitions, the relevance score for x_i is the maximum of all the scores computed for x_i in step 2.

For wide matrix X:

- 1. Partition the rows of X. A binary tree structure is formed. (See figure on the panel to the left.) Denote the resulting leaf nodes $X_{(1)}$, $X_{(2)}$, ... $X_{(p)}$.
- 2. Partition the query q in the same way.
- 3. Compute $s' = \sum_{i=1}^p q_{(i)}^T \tilde{Q}_k^{(i)} \tilde{Q}_k^{(i)T} X_{(i)}$. (See explanation on the panel to the right.)
- 4. Scale each entry of s' by the norm of the corresponding column of



Partitioning (cont.)



Relevance Analysis

How to analyze the relevances between q and X (or a portion of X)?

- In LSI, the relevance scores are computed as the vector $q^T X_k$, modified by scaling each entry with the norm of the corresponding column of X_k .
- Let the SVD of X be $U\Sigma V^T$, then $q^TX_k=q^T(XV_kV_k^T)$ and $q^TX_k=q^T(U_kU_k^TX)$.
- Instead, for tall matrix X, we propose computing the vector $q^T(XQ_kQ_k^T)$ and scaling each entry with the norm of the corresponding column of $XQ_kQ_k^T$, and for wide matrix X, compute the vector $q^T(\tilde{Q}_k\tilde{Q}_k^TX)$ and scale each entry with the norm of the corresponding column of $\tilde{Q}_k\tilde{Q}_k^TX$.
- Here, the columns of Q_k (and \tilde{Q}_k) are the Lanczos vectors for the matrix X^TX (and XX^T). The major advantage is that they are much less expensive to compute than V_k (and U_k)!

How good is using Lanczos vectors instead of singular vectors? For any j < k,

$$\left[(q^T X) - (q^T X Q_k Q_k^T) \right] u_j \le c_j T_{k-j}^{-1} (1 + 2\gamma_j),$$

$$\left[(q^T X) - (q^T \tilde{Q}_k \tilde{Q}_k^T X) \right] u_j \le \tilde{c}_j T_{k-j}^{-1} (1 + 2\gamma_j),$$

where c_j and \tilde{c}_j are some positive constants, γ_j is the eigengap between the j-th and the (j+1)-th eigenvalues of X^TX , and $T_\ell(x)$ is the Chebyshev polynomial of the first kind of degree ℓ . Fixing x, T_ℓ can be viewed as an exponential function of ℓ :

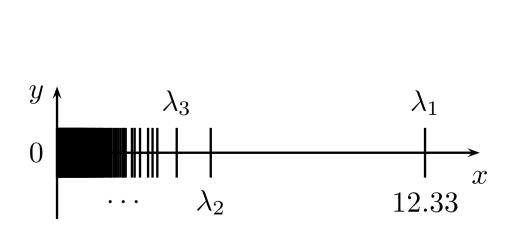
 $T_{\ell}(x) \approx \frac{1}{2} (\exp(\operatorname{arccosh}(x)))^{\ell}.$

Computational costs:

	Singular vectors	Lanczos vectors
Time	$k'(nnz + \min(m, n)) + T_t$	$k(nnz + \min(m, n))$
Space	$nnz + k'\min(m,n) + T_s$	$nnz + k\min(m, n)$
In practice, computing the Lanczos vectors can be an order of		

magnitude faster than computing the singular vectors.

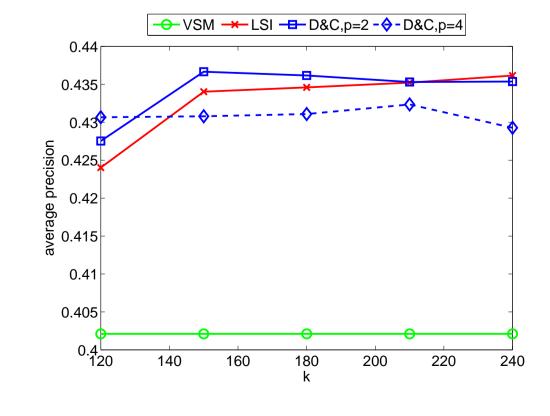
Results



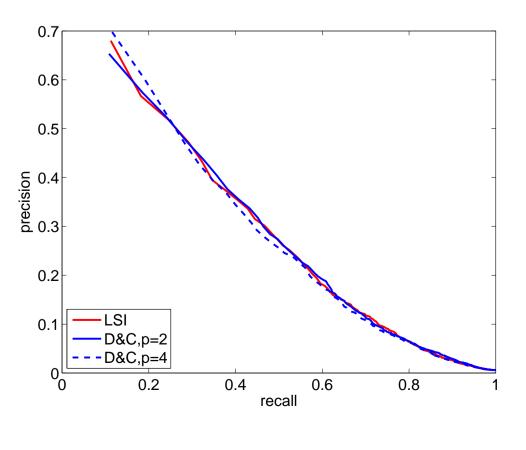
Eigenvalue distribution of the matrix X^TX . Note the big eigengaps.



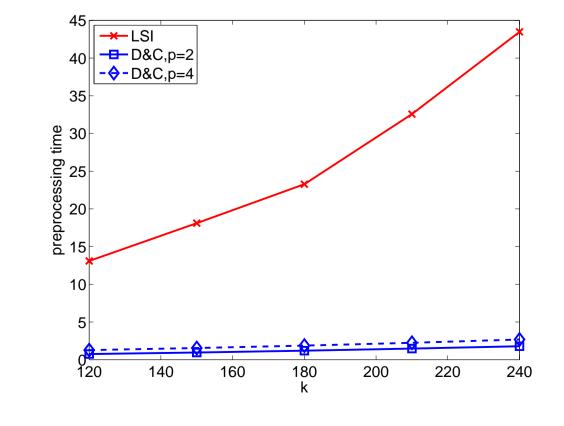
The value of $\left[(q^TX)-(q^TXQ_kQ_k^T)\right]u_j$ for different j (fixing k=300).



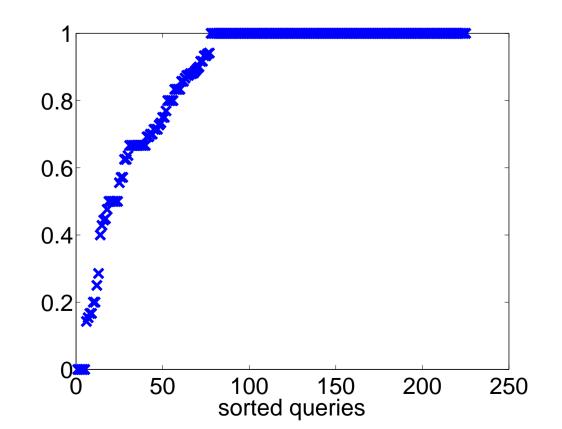
Average query precision for different k.



Precision recall for k = 200.



Time cost: our approach v.s. LSI (in seconds).



Percentage of relevant documents that are in the partition where a certain query belongs.